Telemedicine Appointments Available! 

 Coming soon Retatrutide - Semaglutide 10, 12.5 or 25mg vials  - Tirzepatide 60, 75 or 180mg vials

We will be closed Monday May 27th for Memorial Day 


Telemedicine Appointments Available! 

 Coming soon Retatrutide - Semaglutide 10, 12.5 or 25mg vials  - Tirzepatide 60, 75 or 180mg vials

We will be closed Monday May 27th for Memorial Day 



The Insulin-like Growth Factor (IGF-1) is one of the endocrine hormones that is produced in the liver. The release of this hormone increases in the presence of Human Growth Hormone. Numerous cells throughout the muscles of the human body are equipped with cell receptors that have a high affinity for Insulin-like Growth Factor. This makes this hormone one of the best growth hormones and a facilitator of general cell growth, which it does by targeting different specific tissues, and in more autocrine cell communication processes, it facilitates cell division.

Optimal IGF-1 and growth hormone levels are crucial to bone development during childhood and throughout adult life.

Read on to learn about the additional benefits of IGF-1, proper dosage, and potential side effects. 

Benefits of IGF-1

Benefits of Insulin-like Growth Factor 1 include:

  • Protein synthesis in the body
  • Fat storage is channeled for energy production, which results in a noticeable fat loss.
  • Positive effects on metabolism, increasing lean body mass and decreasing fat
  • Increase in regenerative properties of the body’s nerve tissues
  • Upregulates antioxidant benefit and ligament strength
  • Boosts hyperplasia in muscle cells, which leads to fuller muscle tissues.
  • Improved cognitive function

Changes in Weight During IGF-1 Therapy

The weight gain you will experience from using IGF-1 is not due to water weight. All your weight gain will be caused by actual muscle growth, which is a long-term effect.

Compared to steroids which are overly known for putting on water weight and often leading to adverse side effects, you will acquire solid muscle gain after every one or two weeks, composed of actual heavy muscle.

The most important feature of IGF-1 is its ability to cause hyperplasia in the human body. The body of a person who is on steroids goes through hypertrophy; this means that they will only be increasing the size of the existing cells in their muscles. Instead, IGF-1 leads to hyperplasia, which promotes the growth and development of new muscle cells. 

Variants of IGF-1

There are two groups of IGF variants. These are IGF-1 LR3 and DES IGF-1 (which can also be presented as IGF-1 DES).


IGF-1 is an important protein in our bodies that helps with muscle growth and other functions. However, its natural form doesn't last very long in the body, so scientists created a modified version called IGF-1 LR3. This modified version has a longer half-life (about 20-30 hours) and is more potent than regular IGF-1.

Because of its longer half-life, IGF-1 LR3 can work throughout the day, binding to muscle cell receptors and improving muscle growth rate. It also helps burn fat by inhibiting glucose movement into cells, using fat for energy production.

The great thing about IGF-1 LR3 is that it doesn't require site injections like some other treatments. It cycles through the whole body, binding to muscle receptors, and stays active for about a day. That's why many patients and physicians prefer it, and a daily administration is usually recommended for the best results.


Another type of IGF-1 called DES IGF-1 is up to ten times more potent than regular IGF-1. These two variants have similar structures but work differently, serving specific purposes.

DES IGF-1 is a shorter version of IGF-1 with a half-life of about 20-30 minutes, making it delicate and effective only at the injection site where you want muscle growth. It stimulates hyperplasia in the muscles more than IGF-1 LR3, making it ideal for targeted muscle development.

One unique feature of DES IGF-1 is its ability to bind to receptors affected by lactic acid, which builds up during intense workouts. This allows it to signal tissue growth even during training. DES IGF-1 can be used more frequently and for a longer time than IGF-1 LR3, offering distinct advantages for specific muscle-building goals.


When we check on facts, the growth hormone is actually a precursor to the IGF-1, but why choose IGF-1 over the Growth Hormones? Growth Hormones do not cause direct muscle growth but facilitate muscle growth by signaling the release of the IGF-1.

Human Growth Hormone can be very difficult to obtain. To have it prescribed to you by a physician, you have to be diagnosed with Adult Growth Hormone Deficiency Syndrome. You must take and fail a Growth Hormone Stimulation Test, which indicates that your body is not producing growth hormone in response to a stimulus. This makes IGF-1 and its variants a much more viable solution for an athlete, someone losing to drop body fat, or even those looking to get back into shape.

IGF-1 Variant DOSING 


This variant of IGF-1 should be taken daily for a week. It’s best to take it after a workout.  Since IGF-1 has a very short half-life, desensitization will rarely be noticed.


This variant of IGF-1 should be taken daily for a week. Desensitization occurs and protocol should not go beyond 90 days. A break is needed before resuming treatment. There are other treatment options during the break. 

DES IGF-1 (not available from the pharmacy)

DES IGF-1 should be dosed multiple times daily, preferably before you embark on your training activities. You should target specific sites and muscles with this version. Since DES IGF-1 has a very short half-life, desensitization can rarely be noticed. You should always ensure that you localize your target sites so that you aim at specific muscle groups. If you want to enhance your biceps, you should administer this injection right into your biceps.

Side Effects of IGF-1

IGF-1 in high doses can cause hypoglycemia, but it is not as severe as that caused by insulin. This is the most common side effect. 

It is highly debated that IGF-1 can increase the size of a tumor in cancer patients. Even though this factor might be true in patients with existing cancer cases, IGF-1 does not cause cancer. In fact, the human body requires IGF-1 to regulate heart functions, brain cell stimulation and to improve the functioning of the nervous system.

IGF-1 Therapy Consultations

If you have additional questions about growth hormone therapy or if you would like to be tested for your levels of IGF-1, call 480-839-4131 to schedule your consultation with one of our licensed physicians and transformyou today.

All patients always work directly with one of our licensed physicians to ensure patient safety and confidentiality.

It is important to remember that any program or treatment we offer at transformyou carrying the phrase 'Anti-Aging’ is not intended to stop or prevent one from aging. Rather, our services and products are designed to help individuals effectively manage and navigate the aging process, yielding the best possible levels of health and wellness.

Click below to email us, or fill out the form at the top of the page!

Contact Us


Miescher I, Rieber J, Calcagni M, Buschmann J. In Vitro and In Vivo Effects of IGF-1 Delivery Strategies on Tendon Healing: A Review. Int J Mol Sci. 2023 Jan 25;24(3):2370. doi: 10.3390/ijms24032370. PMID: 36768692; PMCID: PMC9916536.

Garoufalia Z, Papadopetraki A, Karatza E, Vardakostas D, Philippou A, Kouraklis G, Mantas D. Insulin-like growth factor-I and wound healing, a potential answer to non-healing wounds: A systematic review of the literature and future perspectives. Biomed Rep. 2021 Aug;15(2):66. doi: 10.3892/br.2021.1442. Epub 2021 Jun 8. PMID: 34155450; PMCID: PMC8212444.

Lu H, Huang D, Saederup N, Charo IF, Ransohoff RM, Zhou L. Macrophages recruited via CCR2 produce insulin-like growth factor-1 to repair acute skeletal muscle injury. FASEB J. 2011;25:358–369. doi: 10.1096/fj.10-171579.

Antoine Salzmann, Sarah-Naomi James, Dylan M Williams, Marcus Richards, Dorina Cadar, Jonathan M Schott, William Coath, Carole H Sudre, Nishi Chaturvedi, Victoria Garfield, Investigating the Relationship Between IGF-I, IGF-II, and IGFBP-3 Concentrations and Later-Life Cognition and Brain Volume, The Journal of Clinical Endocrinology & Metabolism, Volume 106, Issue 6, June 2021, Pages 1617–1629.

Provenzano PP, Alejandro-Osorio AL, Grorud KW, Martinez DA, Vailas AC, Grindeland RE, Vanderby R Jr. Systemic administration of IGF-I enhances healing in collagenous extracellular matrices: evaluation of loaded and unloaded ligaments. BMC Physiol. 2007 Mar 26;7:2. doi: 10.1186/1472-6793-7-2. PMID: 17386107; PMCID: PMC1851714.

Scavo LM, Karas M, Murray M, Leroith D. Insulin-like growth factor-I stimulates both cell growth and lipogenesis during differentiation of human mesenchymal stem cells into adipocytes. J Clin Endocrinol Metab. 2004;89:3543-3553.

Higashi Y, Quevedo HC, Tiwari S, et al. The interaction between IGF-1, atherosclerosis and vascular aging. Front Horm Res. 2014;43:107-124

Higashi Y, Pandey A, Goodwin B, Delafontaine P. Insulin-Like Growth Factor-1 Regulates Glutathione Peroxidase Expression and Activity in Vascular Endothelial Cells: Implications for Atheroprotective Actions of Insulin-Like Growth Factor-1. Biochim Biophys Acta. 2013;1832:391–399.

Kasemkijwattana C, Menetrey J, Bosch P, Somogyi G, Moreland MS, Fu FH, Buranapanitkit B, Watkins SS, Huard J. Use of growth factors to improve muscle healing after strain injury. Clin Orthop. 2000;370:272–285.

Schiaffino S, Mammucari C. Regulation of skeletal muscle growth by the IGF1-Akt/PKB pathway: insights from genetic models. Skelet Muscle. 2011;1(1):4. Published 2011 Jan 24. doi:10.1186/2044-5040-1-4

Junilla RK, List EO, Berryman DE,et al. The GH/IGF-1 axis in aging and longevity. Nat Rev Endocrinol. 2013;9(6):366-76

Cappola AR, Bandeen-Roche K, Wand GS, et al. Association of IGF-1 levels with muscle strength and mobility in older women.

Aguirre GA, Rodriguez J, de la Garza RG, et al. Insulin-like growth factor-1 deficiency and metabolic syndrome. J Transl Med. 2016;14:3.

Kawai M, Rosen CJ. The IGF-I regulatory system and its impact on skeletal and energy homeostasis. J Cell Biochem. 2010;111(1):14-19. J Clin Endocrinol Metab. 2001;86(9):4139-46.